Mark Scheme (Results)

October 2018

Pearson Edexcel International Advanced Level in Mechanics M1 (WME01/01)

Question Number	Scheme	Marks
3	EITHER: $\quad h=-19.6(t+3)+\frac{1}{2} g(t+3)^{2} \quad$ and $\quad h=\frac{1}{2} g t^{2}$ OR : $\quad h=-19.6 T+\frac{1}{2} g T^{2} \quad$ and $\quad h=\frac{1}{2} g(T-3)^{2}$	M1A1A1 M1A1A1
	$-19.6 T+\frac{1}{2} g T^{2}=\frac{1}{2} g(T-3)^{2} \text { OR } \quad-19.6(t+3)+\frac{1}{2} g(t+3)^{2}=\frac{1}{2} g t^{2}$	M1
(i)	$T=4.5$	A1
(ii)	$h=\frac{1}{2} \times 9.8 \times(T-3)^{2} \quad \text { oe }$	M1
	$=11$ or 11.0	A1
		[7]
	Notes for qu 3	
3	First M1 for use of $s=u t+\frac{1}{2} a t^{2}$ (or any other complete method) to produce an equation in h and T only or h and t only for stone 1 or 2, correct no. of terms but condone sign errors	
	First A1 for a correct equation for stone 1 (g does not need to be substituted but if it is, it must be 9.8)	
	Second A1 for a correct equation for stone 2 N.B. Both A marks can be earned if they use s (instead of h or $-h$) in one of the two equations and then use s consistently in the other equation. N.B. When h and T are used in any equation, they must be used correctly (including sign of h) to obtain A marks	
(i)	Second M1 for eliminating h	
	Third A1 for $T=4.5$	
(ii)	Third M1 for using their T or t value in one of their equations to obtain an h value	
	Fourth A1 for $h=11$ or 11.0	

Question Number	Scheme	Marks
4.	$\sin \theta=\frac{3}{5}$ or $\cos \theta=\frac{4}{5}$ or $\tan \theta=\frac{3}{4}$ oe (may use the angle the string makes with the horizontal, the complementary angle) seen or implied by use of a trig function of e.g. 37° or 53° anywhere. N.B. If they assume angles are 45° can score max B0M1A0A1M0A0A0 Any two of the following equations: $\mathrm{R}(\rightarrow): \quad F \cos \theta=16 \sin \theta$ oe e.g. $F=16 \tan \theta$ (from triangle of forces) $\mathrm{R}(\nearrow): F=m g \sin \theta$ $\mathrm{R}(\uparrow): m g=16 \cos \theta+F \sin \theta$ $\mathrm{R}(\nwarrow): 16=m g \cos \theta$ $(m g)^{2}=F^{2}+16^{2} \quad$ (Pythagoras from triangle of forces) N.B. In all of these equations, θ is what they think the angle that the string makes with the vertical is. $F=12$ (A0 if 12 obtained from rounding an inaccurate answer and A0 for 12.0) N.B. If $\boldsymbol{F}=\mathbf{1 2}$ is given as answer, without any evidence of rounding, give BOD and award A1. $m=2.04$ or 2.0 (A0 for 2)	B1 M1A1 (${ }^{\text {st }}$ equation) M1A1 (2 ${ }^{\text {nd }}$ equation) A1 A1
		[7]
	Notes for qu 4	
	B1 for any correct trig ratio seen	
	First M1 for $1^{\text {st }}$ equation seen with usual rules	
	First A1 for a correct equation	
	Second A1 is now M1 for $2^{\text {nd }}$ equation seen with usual rules	
	Second M1 is now A1 for a correct equation	
	Third A1 for 12	
	Fourth A1 for 2.04 or 2.0 (A0 for 2)	

Question Number	Scheme	Marks
	(c) Dist travelled by the van $=\frac{1}{2} \times 12 V+(18+T) \times V=816$ M1A1ft $V=25.5$	
	Notes for qu 5	
5 a	First B1 for shape of graph	
	Second B1 for shape of graph, crossing first graph	
	Third B1 for $V, 12,24, T$ and $T+30$ placed correctly oe e.g. with delineators. Allow their T and (their $T+30$) where they find T in (b) first.	
5b	M1 for equation in T or $t(=T+30)$ only, using 816 distance travelled by CAR, with correct structure i.e. a trapezium or (triangle + rectangle)	
	First A1 for a correct equation	
	Second A1 for 8 (s)	
5c	M1 for equation in V only, using 816 distance travelled by VAN , with correct structure i.e. a trapezium or (triangle + rectangle) N.B. M0 if they assume the TOTAL time is 30 (or 42) when setting up the equation.	
	First A1 ft on their T value, for a correct equation	
	Second A1 for $V=25.5$	

Question Number	Scheme	Marks	
8(a)	$\begin{aligned} & \mathrm{R}(\perp \text { plane }): R=0.5 \mathrm{~g} \cos 30^{\circ}+5 \sin 30^{\circ} \\ & R=6.743 \ldots=6.7 \text { or } 6.74 \mathrm{~N} \end{aligned}$	M1A1A1 A1 (4)	
(b)	$\mathrm{R}(\\|$ plane $): ~ F=5 \cos 30^{\circ}-0.5 \mathrm{~g} \sin 30^{\circ}(=1.880 \ldots)$	M1A1A1	
	$\mu=\frac{F}{R}=\frac{1.880}{6.743},=0.27880 \ldots=0.28 \text { or } 0.279$	M1A1 (5)	
(c)	NL2: $0.5 \mathrm{~g} \sin 30^{\circ}-F^{\prime}=0.5 a$	M1A1	
	$\mathrm{R}(\perp$ plane $): R^{\prime}=0.5 \mathrm{~g} \cos 30^{\circ}(=4.2435 \ldots)$	M1A1	
	Use of $F^{\prime}=\mu R^{\prime}=0.2787 \ldots \times R^{\prime}(=1.18345 \ldots)$ and solve for a	DM1	
	$a=2.53 \ldots \mathrm{~m} \mathrm{~s}^{-2}$	A1	
	$v^{2}=2 a s=2 \times 2.533 \times 3$	M1	
	$v=3.9$ or $3.90 \mathrm{~ms}^{-1}$	A1 (8)	
		[17]	
	Notes for qu 8		
8a	M1 for resolution perp to the plane, with usual rules		
	First and second A1 for a correct equation, -1 each error		
	Third A1 for 6.7 or $6.74(\mathrm{~N})$ must be positive		
8b	First M1 for resolution parallel to the plane, with usual rules		
	First and second A1 for a correct equation, -1 each error		
	Second M1 for use of $\mu=\frac{F}{R}$		
	Third A1 for 0.28 or 0.279		
8c	SC: If 5 N force is not removed, can score max: M1A0M1A0DM1A0M0A0 with usual rules applying for M marks assuming that 5 N force still acting.		
	First M1 for equation of motion parallel to plane, with usual rules		
	First A1 for a correct equation (F, does not need to be substituted and allow if they use the value of F from part (b))		
	Second M1 for resolution perp to the plane, with usual rules		
	Second A1 for a correct equation		
	Third DM1, dependent on both previous M marks, for use of $F^{\prime}=\mu R^{\prime}$ and		

Question Number	Scheme	Marks
	solving for a	
	Third A1 for $a=2.53$ or better, if they get v wrong, but if they get $v=3.9$ then allow $a=2.5$ or 2.54	
	Fourth M1 (independent but must have used an equation of motion to find a for complete method to find v using their a M0 if particle is decelerating i.e if their a is negative down the plane.	
	Fourth A1 for $v=3.9$ or $3.90 \mathrm{~ms}^{-1}$	

Mark Scheme (Results)

October 2018

Pearson Edexcel International Advanced Level in Mechanics M2 (WME02/01)

Q	Scheme	Marks	Notes
3a	Use of $\mathbf{v}=\frac{\mathrm{d} \mathbf{r}}{\mathrm{d} t}$	M1	Differentiate - powers going down
	$\mathbf{v}=\left(16-9 t^{2}\right) \mathbf{i}+\left(3 t^{2}-2 t\right) \mathbf{j}$	A1	
	i component of velocity $=0$:	M1	
	$16-9 t^{2}=0 \quad \Rightarrow t=\frac{4}{3}$,	DM1	Solve for t and find \mathbf{v} or $\|\mathbf{v}\|$ Dependent on previous M1
	$\mathbf{v}=\left(3 \times \frac{16}{9}-2 \times \frac{4}{3}\right) \mathbf{j}=\frac{8}{3} \mathbf{j} \quad(2.67 \mathbf{j})$	A1	Answer must be a vector. ISW
		(5)	
3b	Use of $\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}$:	M1	Differentiate - powers going down
	$\mathbf{a}=(-18 t) \mathbf{i}+(6 t-2) \mathbf{j}(=-72 \mathbf{i}+22 \mathbf{j})$	A1ft	Follow their \mathbf{v}
	Use of Pythagoras' theorem: $\|\mathbf{a}\|=\sqrt{72^{2}+22^{2}}$	M1	
	$\|\mathbf{a}\|=\sqrt{5668}=75.3\left(\mathrm{~m} \mathrm{~s}^{-2}\right)(75)$	A1	Or better. From correct work
		(4)	
		[9]	

Q	Scheme	Marks	Notes
4a	Velocity at $T: \rightarrow 12 \cos 30^{\circ}=u_{h}\left(=u \cos \theta^{\circ}\right)$	M1	
	$\left(u \cos \theta^{\circ}=6 \sqrt{3}=10.39 \ldots ..\right)$	A1	Correct unsimplified equation for horizontal component of u
	$\uparrow-12 \sin 30^{\circ}=u_{v}-2 g\left(=u \sin \theta^{\circ}-2 \times 9.8\right)$	M1	
	$\left(u \sin \theta^{\circ}=13.6\right)$	A1	Correct unsimplified equation for vertical component of u
	$\tan \theta^{\circ}=\frac{13.6}{6 \sqrt{3}}$	DM1	Solve equations for u or θ Dependant on both preceding M marks
	$\theta=52.6$ (53)	A1	One correct (max 3 s.f.)
	$u=17.1$ (17)	A1	Both correct (max 3 s.f.)
		(7)	
4b	Vertical distance : $h=-12 \sin 30^{\circ} \times 2+\frac{1}{2} \times 9.8 \times 2^{2}$	M1	Complete method using suvat to find h.
	$\begin{aligned} & \left(\text { or } h=17.1 \sin 52.6^{\circ} \times 2-\frac{1}{2} \times 9.8 \times 2^{2}\right) \\ & \left(\text { or } 6^{2}=(u \sin \theta)^{2}-2 g h\right) \end{aligned}$	A1	Or equivalent correct unsimplified equation in h
	$h=7.6$ (7.60)	A1	
		(3)	
$\begin{aligned} & \text { 4b } \\ & \text { alt } \end{aligned}$	Using energy: $\frac{1}{2} m u^{2}-\frac{1}{2} m 12^{2}=m g h$	M1A1	
	$h=7.6$ (7.60)	A1	
		(3)	

Q	Scheme	Marks	Notes
4c	Double the time from max ht to T : $-12 \sin 30^{\circ}=-g t$	M1	
	Time above $T: \quad 2 t=2 \times \frac{12 \sin 30}{g}$	A1	
	$=1.22$ (1.2) (s)	A1	
		(3)	
$\begin{aligned} & \mathbf{4 c} \\ & \text { alt } \end{aligned}$	Vertical component of speed equal magnitude and opposite sign: $-12 \sin 30^{\circ}=12 \sin 30^{\circ}-g T$	M1	
	$t=\frac{24 \sin 30^{\circ}}{g}$	A1	
	$t=1.22$	A1	
		(3)	
$\begin{aligned} & \mathbf{4 c} \\ & \text { alt } \end{aligned}$	Equation for vertical distance and solve for values of t : $7.6=u \sin \theta^{\circ} \times t-\frac{1}{2} g t^{2}, \quad 4.9 t^{2}-13.6 t+7.6=0$	M1	
	$t_{2}-t_{1}=\frac{\sqrt{13.6^{2}-4 \times 4.9 \times 7.6}}{4.9}$	A1	$2-\frac{38}{49}(2-0.7785)$
	$t=1.22$	A1	From correct work only
		(3)	
	$\text { For other alternatives: }\left\{\begin{array}{cc} \text { complete strategy } & \mathrm{M} 1 \\ \text { correct equation in } t & \mathrm{~A} 1 \\ t=1.22 & \mathrm{~A} 1 \end{array}\right.$		
		[13]	

Q	Scheme	Marks	Notes
6 a	Moments about A :	M1	Need all terms and dimensionally correct
	$k m g \times 0.5 a \sin 60^{\circ}+8 m g \times a \sin 60^{\circ}=T \sin 30^{\circ} \times 2 a$	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	Unsimplified equation. - 1 each error $\cos 60^{\circ}$ for $\sin 60^{\circ}$ twice counts as one error
	$T=g \sin 60^{\circ}\left(\frac{k m}{2}+8 m\right)=\frac{\sqrt{3}}{4}(16+k) m g \text { Given Answer }$	A1	Obtain given answer from correct working
		(4)	
6b	Resolving: $\rightarrow T \cos 60^{\circ}=H$	M1	Condone sin/cos confusion
	$\uparrow V+T \cos 30^{\circ}=8 m g+k m g$	M1	Condone sin/cos confusion \& sign errors
		A1	Both equations correct unsimplified
			Allow M1M1A1 for alternative equations that are sufficient to solve for k
	Use $F=\mu R$ with their V and H $\left(V=\mu H \Rightarrow(8+k) m g-T \cos 30^{\circ}=\frac{2}{3} \sqrt{3} \times T \cos 60^{\circ}\right)$	M1	Dependent on having expressions for V and H
	Substitute for T and solve for $k:(8+k)-\frac{3}{8}(16+k)=\frac{\sqrt{3}}{3} \frac{\sqrt{3}}{4}(16+k)$	DM1	Dependent on 3 preceding M marks
	$2+\frac{5}{8} k=4+\frac{1}{4} k, \frac{3}{8} k=2, \quad k=\frac{16}{3}($ or 5.33$)$	A1	
		(6)	
		[10]	

