

## Mark Scheme (Results)

Summer 2018

Pearson Edexcel International A Level in Mechanics M1 (WME01/01) Paper 01

| Scheme                                                                                                                                                                                                       | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Mark parts (i) and (ii) together                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | For marking:1st equation M1A1<br>2nd equation M1A1<br>1st value A1, 2nd value A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Moments equation                                                                                                                                                                                             | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Use moments to form an equation in $R_c$ and/or $R_D$<br>All terms required. Dimensionally correct. Condone sign errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| $M(D): (60g \ge 0.6) + (20g \ge 1.6) = R_C \ge 2$<br>$M(C): (60g \ge 1.4) + (20g \ge 0.4) = R_D \ge 2$<br>$M(A): 2 \ge 20g + 3 \ge 60g = 1.6R_C + 3.6R_D$<br>$M(B): 0.4R_D + 2.4R_C = 60g \ge 1 + 20g \ge 2$ | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correct unsimplified equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| $R_{C} = 34g$                                                                                                                                                                                                | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 333 (333.2) is an accuracy error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Resolve vertically<br>$(\uparrow) R + R = 80 q$                                                                                                                                                              | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Or form a moments equation in $R_D$<br>Correct unsimplified equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| $R_D = 46g$                                                                                                                                                                                                  | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 451 (450.8) is an accuracy error (penalise once only if g substituted in both answers and correct versions not seen)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                              | (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Set $R_D = 0$ and use moments to form equation in a relevant distance (One unknown only)                                                                                                                     | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Complete method for a relevant distance<br>Dimensionally correct equation.<br>Using their answers from (a) is M0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| $M(C)$ , $(20g \times 0.4) = (60g \times x)$<br>where $x =$ distance from C when beam tilts                                                                                                                  | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correct unsimplified equation for a relevant distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| $\left(x = \frac{2}{15}\right)$                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Use their distance to find the distance walked                                                                                                                                                               | DM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dependent on the previous M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Distance $= 1.4 + \frac{2}{15} = \frac{23}{15} = 1.53 \text{ m}$                                                                                                                                             | A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                              | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|                                                                                                                                                                                                              | SchemeMark parts (i) and (ii) togetherMoments equation $M(D)$ : $(60g \ge 0.6) + (20g \ge 1.6) = R_c \ge 2$ $M(C)$ : $(60g \ge 1.4) + (20g \ge 0.4) = R_b \ge 2$ $M(A)$ : $2 \ge 20g + 3 \ge 60g = 1.6R_c + 3.6R_b$ $M(B)$ : $0.4R_b + 2.4R_c = 60g \times 1 + 20g \times 2$ $R_c = 34g$ Resolve vertically $(\uparrow) R_c + R_b = 80g$ $R_b = 46g$ Set $R_b = 0$ and use moments to form equation in a relevant distance (One unknown only) $M(C)$ , $(20g \times 0.4) = (60g \times x)$ where $x$ = distance from C when beam tilts $\left(x = \frac{2}{15}\right)$ Use their distance to find the distance walkedDistance = $1.4 + \frac{2}{15} = \frac{23}{15} = 1.53$ m | SchemeMarksMark parts (i) and (ii) togetherM1Moments equationM1 $M(D)$ : $(60g \times 0.6) + (20g \times 1.6) = R_c \times 2$<br>$M(C)$ : $(60g \times 1.4) + (20g \times 0.4) = R_p \times 2$<br>$M(A): 2 \times 20g + 3 \times 60g = 1.6R_c + 3.6R_p$<br>$M(B): 0.4R_p + 2.4R_c = 60g \times 1 + 20g \times 2$ A1Resolve verticallyM1 $(\uparrow) R_c + R_p = 80g$ A1 $R_p = 46g$ A1 $(f)$ Set $R_p = 0$ and use moments to form equation in a<br>relevant distance (One unknown only)M1 $M(C), (20g \times 0.4) = (60g \times x)$<br>where $x$ = distance from C when beam tiltsA1 $(x = \frac{2}{15})$ Use their distance to find the distance walkedDM1Distance $= 1.4 + \frac{2}{15} = \frac{23}{15} = 1.53$ mA1 $(4)$ $(10)$ |  |  |

| Question<br>Number | Scheme                                            | Marks                      | Notes                                                                                                                                                                                                                                               |  |
|--------------------|---------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                    | v                                                 | B1 shape<br>B1 figs        | Correct shape graph for cyclist<br>4 marked                                                                                                                                                                                                         |  |
| 3a                 | 8<br>Cyclist                                      | B1 shape<br>B1 figs<br>(4) | Motorcyclist graph in relatively correct position<br>Must start at $t = 4$ and must continue beyond point of<br>intersection of the graphs<br>T+4 marked<br>Treat two separate graphs as two attempts and award<br>the marks for the better attempt |  |
|                    |                                                   |                            |                                                                                                                                                                                                                                                     |  |
| 3b                 | $\frac{1}{2}T.4T = \left(\frac{T+T+4}{2}\right)8$ | M1                         | Equate distances to form equation in <i>T</i>                                                                                                                                                                                                       |  |
|                    |                                                   | A1                         | One distance correct                                                                                                                                                                                                                                |  |
|                    |                                                   | A1                         | Both distances correct                                                                                                                                                                                                                              |  |
|                    | $T^2 - 4T - 8 = 0$                                | A1                         | Simplify to 3 term quadratic                                                                                                                                                                                                                        |  |
|                    | $T = 2 \pm \sqrt{12}$                             | M1                         | Solve a 3 term quadratic for <i>T</i>                                                                                                                                                                                                               |  |
|                    | T = 5.5                                           | A1                         | Q asks for answer to 1 dp.<br>Must reject negative solution if seen.                                                                                                                                                                                |  |
|                    |                                                   | (6)                        |                                                                                                                                                                                                                                                     |  |
|                    |                                                   | [10]                       |                                                                                                                                                                                                                                                     |  |
|                    |                                                   |                            | See over                                                                                                                                                                                                                                            |  |
|                    |                                                   |                            |                                                                                                                                                                                                                                                     |  |
|                    |                                                   |                            |                                                                                                                                                                                                                                                     |  |

| Question<br>Number | Scheme                                                                    | Marks | Notes                                                                                                                                                                                |  |
|--------------------|---------------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SC1                | $ \begin{array}{c} v \\ 8 \\ 0 \\ 4 \\ T \end{array} $ motorcyclist $ t $ |       | B1B1<br>B1B0<br>$16+8(T-4) = \frac{1}{2} \times 4(T-4)^2$ M1A1A1<br>$T^2 - 12T + 24 = 0$ (or equivalent) A1<br>$T = 6 + 2\sqrt{3} = 9.5$ M1A0<br>(marking the <i>T</i> as a misread) |  |
| SC2                | $\begin{array}{c} v \\ 8 \\ \hline \\ 0 \\ 4 \\ T \end{array} \qquad t$   |       | B1B1<br>B0B0<br>$16+8(T-4) = \frac{1}{2} \times 4T^2$ M1A1A1<br>$2T^2 - 8T + 16 = 0$ A0M0A0<br>(completely changed the question but some evidence<br>of correct thinking)            |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |
|                    |                                                                           |       |                                                                                                                                                                                      |  |

| Question<br>Number | Scheme                                                         | Marks | Notes                                                                                                                                                     |  |
|--------------------|----------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>4</b> a         | Resolve perpendicular to the surface                           | M1    | Condone sin/cos confusion                                                                                                                                 |  |
|                    | $R = 2g\cos\alpha \qquad (15.68)$                              | A1    | Correct resolution                                                                                                                                        |  |
|                    | $F = \frac{1}{4}R = \frac{2g}{5} = 3.9$ N or 3.92 N            | A1    | Max 3 sf for decimal answer                                                                                                                               |  |
|                    |                                                                | (3)   |                                                                                                                                                           |  |
|                    |                                                                |       |                                                                                                                                                           |  |
| 4b                 | $-2g\sin\alpha - F = 2a$                                       | M1    | Equation of motion parallel to the plane.<br>Require all terms and dimensionally correct.<br>Condone sign errors and sin/cos confusion                    |  |
|                    |                                                                | A1ft  | Correct unsimplified equation in <i>F</i> (or their <i>F</i> )                                                                                            |  |
|                    | $\frac{-4g}{5} = a$                                            | A1    | Or $-7.84 (ms^{-2})$ Accept +/-                                                                                                                           |  |
|                    | $0^2 = 6^2 - \frac{8g}{5}s$                                    | DM1   | Complete method using <i>suvat</i> and $a \neq g$ to find <i>s</i><br>Dependent on the previous M1                                                        |  |
|                    | $s = \frac{45}{2g} = 2.3 \text{ m} \text{ or } 2.30 \text{ m}$ | A1    | Max 3 sf                                                                                                                                                  |  |
|                    |                                                                | (5)   |                                                                                                                                                           |  |
|                    |                                                                |       |                                                                                                                                                           |  |
| 4c                 | $2g\sin\alpha - F = 2a'$                                       | M1    | Equation for motion down the plane to find new<br>acceleration. Require all terms and dimensionally correct.<br>Condone sign errors and sin/cos confusion |  |
|                    |                                                                | A1ft  | Correct unsimplified equation in <i>F</i> (or their <i>F</i> )                                                                                            |  |
|                    | $\frac{2g}{5} = a'$                                            | A1    | Or $3.92 ({\rm ms^{-2}})$                                                                                                                                 |  |
|                    | $v^2 = \frac{4g}{5} \frac{45}{2g} = 18 \implies$               | DM1   | Complete method using <i>suvat</i> , $a' \neq g$ and $a' \neq a$ , to find <i>v</i><br>Dependent on the previous M1                                       |  |
|                    | $v = \sqrt{18} = 4.2 \text{ m s}^{-1}$ (or better)             | A1    | g cancels<br>Condone 4.25 (from using rounded values).                                                                                                    |  |
|                    |                                                                | (5)   |                                                                                                                                                           |  |
|                    |                                                                | [13]  |                                                                                                                                                           |  |

| Question  |                                                                                                                                    |       |                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------|
| Number    | Scheme                                                                                                                             | Marks | Notes                                                                                                                        |
| 5a        | Correct equation for $\mathbf{v}_{p}$ or find displacement                                                                         | M1    | Use of $\mathbf{r}_{p} = \mathbf{r}_{0} + \mathbf{v}_{p}t$ to find <b>v</b> . Allow for $\lambda(-\mathbf{i} - 5\mathbf{j})$ |
|           | $\mathbf{v}_{P} = 3(6\mathbf{i} - (7\mathbf{i} + 5\mathbf{j})) = -3\mathbf{i} - 15\mathbf{j}$                                      | A1    |                                                                                                                              |
|           | $\sqrt{(-3)^2 + (-15)^2}$                                                                                                          | M1    | Use of Pythagoras to find magnitude of their v                                                                               |
|           | $=\sqrt{234} = 15.3 (\text{km}\text{h}^{-1})$ (or better)                                                                          | A1    | CSO $(3\sqrt{26})$ A0 if it comes from $3\mathbf{i} + 15\mathbf{j}$                                                          |
|           |                                                                                                                                    |       | NB Could score the M marks in reverse order - find displacement in 20 minutes and then multiply by 3                         |
|           |                                                                                                                                    | (4)   |                                                                                                                              |
|           |                                                                                                                                    |       |                                                                                                                              |
| 5b        | Use of $\mathbf{r}_{p} = \mathbf{r}_{0} + \mathbf{v}_{p}t$ : $\mathbf{r}_{p} = 7/1 + 5\mathbf{j} + t(-3\mathbf{i} - 15\mathbf{j})$ | M1    | For their $\mathbf{v}_p$                                                                                                     |
|           | $\Rightarrow \mathbf{r}_{P} = (7-3t)\mathbf{i} + (5-15t)\mathbf{j}$                                                                | A1    | Obtain <b>given answer</b> from correct working                                                                              |
|           |                                                                                                                                    | (2)   |                                                                                                                              |
|           |                                                                                                                                    |       |                                                                                                                              |
| 5c        | $\frac{(7-3t)}{(5-15t)} = \frac{16}{5}$                                                                                            | M1    | Use given answer and direction to form equation in $t$                                                                       |
|           |                                                                                                                                    | A1    | Correct unsimplified equation                                                                                                |
|           | 35 - 15t = 80 - 240t                                                                                                               | DM1   | Solve for <i>t</i> . Dependent on the previous M1                                                                            |
|           | t = 0.2                                                                                                                            | A1    |                                                                                                                              |
|           |                                                                                                                                    | (4)   |                                                                                                                              |
|           |                                                                                                                                    |       |                                                                                                                              |
| <u>5d</u> | P and $Q$ in the same place at the same time                                                                                       | M1    | Equate <b>i</b> or <b>j</b> components of position vectors and solve for <i>t</i>                                            |
|           | $\Rightarrow 7-3t = 5+2t  \text{or}  5-15t = -3+5t$                                                                                | Al    | Either                                                                                                                       |
|           | t = 0.4                                                                                                                            | Al    |                                                                                                                              |
|           | Check that the same value of <i>t</i> gives equal values for the other component                                                   | DM1   | Dependent on the previous M mark                                                                                             |
|           | $\mathbf{r} = (5.8\mathbf{i} - \mathbf{j}) \text{ km}$                                                                             | A1    | Must be a vector                                                                                                             |
|           |                                                                                                                                    | (5)   |                                                                                                                              |
|           |                                                                                                                                    | [15]  |                                                                                                                              |

| Question<br>Number | Scheme                                                                     | Marks      | Notes                                                                                                                                   |  |  |
|--------------------|----------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                    | $\leftarrow$ 100 N $\leftarrow$ 200 N                                      |            |                                                                                                                                         |  |  |
|                    | $600 \text{ kg} \longleftarrow M \text{ kg} \longleftarrow 6500 \text{ N}$ |            |                                                                                                                                         |  |  |
| 6a                 | For the trailer:                                                           | M1         | Complete method to form an equation in <i>T</i> .<br>e.g. equation of motion for the trailer. Need all 3 terms.<br>Condone sign errors. |  |  |
|                    | $-100 - T = 600 \times (-4)$                                               | A1         | Correct unsimplified equation. Allow with $\pm T$                                                                                       |  |  |
|                    | T = 2300  N                                                                | A1         | Must be positive                                                                                                                        |  |  |
|                    |                                                                            | (3)        |                                                                                                                                         |  |  |
|                    |                                                                            |            |                                                                                                                                         |  |  |
| 6b                 | For the car and trailer:                                                   | M1         | Complete method to solve for <i>M</i> .<br>Equation of motion for the car + trailer. Need all terms.<br>Condone sign errors.            |  |  |
|                    | 6500 + 100 + 200 = 4(M + 600)                                              | A1         | Correct unsimplified equation                                                                                                           |  |  |
|                    | M = 1100                                                                   | A1         |                                                                                                                                         |  |  |
|                    |                                                                            |            | Allow M1A1 if a correct equation is seen in (a) and used in (b)                                                                         |  |  |
| 6balt              | For the car:                                                               | M1         | Equation of motion for the car. Need all terms.<br>Condone sign errors.                                                                 |  |  |
|                    | 6500 + 200 - T = 4M                                                        | A1         | Correct unsimplified equation in <i>T</i> or their <i>T</i>                                                                             |  |  |
|                    | M = 1100                                                                   | A1         |                                                                                                                                         |  |  |
|                    |                                                                            | (3)        |                                                                                                                                         |  |  |
|                    |                                                                            |            | Complete method using <i>suvat</i> to find <i>t</i>                                                                                     |  |  |
| 6с                 | $s = vt - \frac{1}{2}at^2$                                                 | <b>M</b> 1 | Clear use of $s = ut + \frac{1}{2}at^2$ with $u = 0, a = 4$ is M0.                                                                      |  |  |
|                    |                                                                            |            | e.g. $40.5 = -2t^2$ from no working is M0A0                                                                                             |  |  |
|                    | $40.5 = \frac{1}{2}.4.t^2$                                                 | A1         | Correct unsimplified equation                                                                                                           |  |  |
|                    | <i>t</i> = 4.5 s                                                           | A1         |                                                                                                                                         |  |  |
|                    |                                                                            | (3)        |                                                                                                                                         |  |  |
|                    |                                                                            | [9]        |                                                                                                                                         |  |  |

| Question<br>Number | Scheme                                                     | Marks | Notes                                                                                                                                                                     |  |
|--------------------|------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 7a                 | $\sin \alpha = \frac{3}{5}$ or $\cos \alpha = \frac{4}{5}$ | B1    | Correct trig ratios for $\alpha$ seen or implied<br>Watch out - it could be up beside the diagram                                                                         |  |
|                    | At $B$ , $(\uparrow)$                                      | M1    | Complete method to form equation in $T_{AB}$                                                                                                                              |  |
|                    | $\Rightarrow T_{AB}\sin\alpha = 3g$                        | A1    | Correct unsimplified equation                                                                                                                                             |  |
|                    | $T_{AB} = 5g = 49 \text{ N}$                               | A1    |                                                                                                                                                                           |  |
|                    |                                                            | (4)   |                                                                                                                                                                           |  |
|                    |                                                            |       |                                                                                                                                                                           |  |
| 7b                 | At $B$ , $(\rightarrow)$                                   | M1    | Complete method to form equation in $T_{BC}$                                                                                                                              |  |
|                    | $\Rightarrow T_{AB} \cos \alpha = T_{BC}$                  | A1    | Correct unsimplified equation. Allow with their $T_{AB}$                                                                                                                  |  |
|                    | $T_{BC} = 4g = 39 \text{ or } 39.2 \text{ N}$              | A1    |                                                                                                                                                                           |  |
|                    |                                                            | (3)   |                                                                                                                                                                           |  |
|                    |                                                            |       |                                                                                                                                                                           |  |
|                    |                                                            |       | Resolve to form equation in $T_{CD}$                                                                                                                                      |  |
| 7c                 | Resolve at <i>C</i> :                                      | M1    | There is a lot of confusion over the labelling of the tensions. Allow if a value is used correctly, whatever it is called.                                                |  |
|                    | At C, $(\rightarrow) T_{CD} \cos \beta = T_{BC}$           | A1    | One correct equation in $T_{CD}$<br>Could be whole system equations e.g.<br>$T_{AB} \cos \alpha = T_{CD} \cos \beta$<br>$T_{AB} \sin \alpha + T_{CD} \sin \beta = (3+M)g$ |  |
|                    | At C, $(\uparrow) T_{CD} \sin \beta = Mg$                  | A1    | Two correct equations in $T_{CD}$ (=101.92)                                                                                                                               |  |
|                    | $\tan\beta = \frac{Mg}{T_{BC}}$                            | DM1   | Dependent on previous M1. Use $\tan \beta$ and solve for M                                                                                                                |  |
|                    | $Mg = 4g \times \frac{12}{5} \Longrightarrow M = 9.6$      | A1    |                                                                                                                                                                           |  |
|                    |                                                            | (5)   |                                                                                                                                                                           |  |
|                    |                                                            | [12]  |                                                                                                                                                                           |  |
|                    |                                                            |       |                                                                                                                                                                           |  |
|                    |                                                            |       |                                                                                                                                                                           |  |



## Mark Scheme (Results)

## Summer 2018

Pearson Edexcel International Advanced Level In Mechanics M2 (WME02/01)

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Marks |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 2a                 | $A = \begin{bmatrix} R & I \\ 30^{\circ} & 6g \end{bmatrix} = \begin{bmatrix} R & I \\ 6g \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                    | $\longrightarrow$ F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|                    | Moments about A: $T \times 1.6 \sin 70^\circ = 6g \times 0.8 \cos 30^\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1A2  |
|                    | T = 27.1 Given Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (4)   |
| 2h                 | Resolve $\leftrightarrow \cdot F = T \cos 40$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1    |
| 20                 | Resolve $\uparrow$ : $R + T \cos 50 = 6g$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MIAI  |
|                    | Use of $F \le \mu R$ and solve for $\mu : \mu \ge \frac{20.76}{41.38} = 0.50$ (0.502)                                                                                                                                                                                                                                                                                                                                                                                                                                             | DM1A1 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (5)   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [9]   |
|                    | Notes for Qu2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|                    | <ul> <li>rules (applied to all equations if more than one is used)</li> <li>N.B. Treat wrong angle(s) as A error(s)</li> <li>A2 for a correct equation (or equations) A1A0 if one error (Allow use of <i>a</i> and 2<i>a</i> for lengths)</li> <li>A1 for 27.1 correctly obtained (and no incorrect work seen)</li> <li>N.B. GIVEN ANSWER</li> </ul>                                                                                                                                                                              |       |
|                    | Other equations:<br>$\swarrow : R \cos 60 + F \cos 30 = 6g \cos 60 + T \cos 70$<br>$\swarrow : R \sin 60 + T \sin 70 = F \sin 30 + 6g \sin 60$<br>$M(B) : 6gl \cos 30 + F2l \sin 30 = R2l \cos 30$<br>$M(G) : Fl \sin 30 + Tl \sin 70 = Rl \cos 30$                                                                                                                                                                                                                                                                               |       |
|                    | 2(b)<br>B1 for $F = T \cos 40$ seen<br>First M1 for a complete method, with usual rules applied to all equations<br>used, to find R<br><b>N.B.</b> Treat wrong angle(s) as A error(s)<br>First A1 for a correct equation<br>Second <b>DM</b> 1, dependent on first M1, for use of $F \le \mu R$ , and solve for<br>$\mu$<br>(Allow this M if they use $F = \mu R$ or $F < \mu R$ but final A1 not then<br>available but M0 if they use $F \ge \mu R$ or $F > \mu R$ )<br>Second A1 for either $\mu \ge 0.5(0)$ or $\mu \ge 0.502$ |       |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 5a                 | Differentiate v: $\mathbf{a} = (6t - 4)\mathbf{i} + (6t - 8)\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1A1          |
|                    | $\mathbf{F} = m\mathbf{a}$ when $t = 4$ : $\mathbf{F} = 0.3(20\mathbf{i} + 16\mathbf{j}) = 6\mathbf{i} + 4.8\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (3)           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |
| 5b                 | Motion parallel to i: $3t^2 - 8t + 4 = 0 = (3t - 2)(t - 2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1            |
|                    | $t = \frac{2}{3} \text{ or } t = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1            |
|                    | Integrate v: $\mathbf{r} = (t^3 - 2t^2(+p))\mathbf{i} + (t^3 - 4t^2 + 4t(+q))\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1A1          |
|                    | Use limits: $\mathbf{r}_2 = (8 - 8(+p))\mathbf{i} + (8 - 16 + 8(+q))\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1A1          |
|                    | $\mathbf{r}_{\frac{2}{3}} = \left(\frac{8}{27} - \frac{8}{9}(+p)\right)\mathbf{i} + \left(\frac{8}{27} - \frac{16}{9} + \frac{8}{3}(+q)\right)\mathbf{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1            |
|                    | $\overrightarrow{AB} = \pm \left(\frac{16}{27}\mathbf{i} - \frac{32}{27}\mathbf{j}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |
|                    | Pythagoras' theorem: $\left  \overrightarrow{AB} \right  = \frac{16}{27} \sqrt{5} = 1.3$ (or better) (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>DM</b> 1A1 |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (9)           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [12]          |
|                    | Notes for Qu5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |
|                    | Accept column vectors throughout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |
|                    | First M1 for attempt to differentiate <b>v</b> , at least two powers of <i>t</i> decreasing by one.<br>A1 for a correct expression. (A0 if <b>i</b> or <b>j</b> omitted)<br>Second M1 for multiplying their <b>a</b> by 0.3, substituting $t = 4$ and collecting <b>i</b> 's and <b>j</b> 's. Isw if they find the magnitude.<br><b>5(b)</b><br>First M1 for $3t^2 - 8t + 4 = 0$ and attempting to solve. This M mark can be implied by two correct answers but if answer(s) are incorrect , we need to see an explicit attempt at factorising, using the formula or completing the square.<br>First A1 for two correct answers, allow 0.67 or better.<br>Second M1 for attempt to integrate <b>v</b> , to produce a vector, with at least two powers of <i>t</i> increasing by 1.<br>Second A1 for a correct <b>r</b> (constant not needed).<br>Third M1 for substituting both their values of <i>t</i> (which must have come from using a <u>velocity</u> vector) into their <b>r</b> .<br>Third A1 for correct unsimplified <b>r</b> <sub>2</sub> ( constant not needed).Allow a point.<br>Fourth A1 for correct unsimplified <b>r</b> <sub>2</sub> ( constant not needed).Allow a |               |
|                    | point.<br>Fourth <b>DM</b> 1, dependent on previous M mark, for subtracting their<br><u>velocity</u> vectors (or points) either way and using Pythagoras to find the<br>length.<br>Fifth A1 for correct surd answer oe or 1.3 or better.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |