Pearson

Mark Scheme (Results)

October 2017

Pearson Edexcel International A Level in Mechanics M1 (WME01/01)

General Principles for Mechanics Marking

Question Number	Scheme	Marks
1	$T \cos 70^{\circ}+R=40 g$	M1A1
	$T \cos 20^{\circ}=F$	M1A1
	$F=\frac{3}{4} R$	B1
	Eliminate R and solve for T	DM1
	$T=250 \mathrm{~N}$ or 246 N	A1
		7
	Notes	
1	First M1 for resolving vertically with usual rules (must be using either 20° or 70°) First A1 for a correct equation Second M1 for resolving horizontally with usual rules (must be using either 20° or 70°) Second A1 for a correct equation B1 for $F=\frac{3}{4} R$ seen (could be on a diagram) Third DM1 dependent on previous two M marks Third A1 for either 250 (N) or 246 (N)	
2a	$M(D),(1080 \times 1)-(400 \times 2)=R \times 35$	M1 A1
	$R_{C}=80(\mathrm{~N})$	A1
	$M(C),(1080 \times 2.5)+(400 \times 5.5)=R_{D} \times 3.5$	M1A1
	$R_{D}=1400(\mathrm{~N})$	A1 (6)
	OR (\uparrow) $R_{C}+R_{D}=1480$	M1A1
2 b		
	$R_{C}+\left(R_{C}+520\right)=1480 \quad$ OR $\quad R_{D}+\left(R_{D}-520\right)=1480$	M1 A1
	$M(D), \quad(1080 \times 1)-400(x-4)=R_{C} \times 3.5$	M1 A1
	$x=2.5$	A1 (5)
		11
	Notes	
2 a	First M1 for a moments equation or a vertical resolution First A1 for a correct equation (R_{C} and/or R_{D} do NOT need to be substituted but if one is, it can be their value found from a previous equation)	

Question Number	Scheme	Marks
	Second A1 for $R_{C}=80(\mathrm{~N})$ Second M1 for a moments equation or a vertical resolution Third A1 for a correct equation (R_{C} and/or R_{D} do NOT need to be substituted but if one is, it can be their value found from a previous equation) Fourth A1 for $R_{D}=1400(\mathrm{~N})$ Enter marks for equations on ePEN, in the order they appear	
2 b	First M1 for a moments equation or a vertical resolution First A1 for a correct equation (R_{C} and/or R_{D} do NOT need to be substituted but if one is, it can be their value found from a previous equation) Second M1 for a moments equation or a vertical resolution Second A1 for a correct equation (R_{C} and/or R_{D} do NOT need to be substituted but if one is, it can be their value found from a previous equation) Third A1 for $x=2.5$ Enter marks for equations on ePEN, in the order they appear N.B. Equations may contain any or all of R_{C}, R_{D} or x for M marks but must contain only one of R_{C} or R_{D} to earn the A mark. N.B. If they assume that $R_{D}=520$, they lose all the marks for part (b). N.B If they start with $2 R=1480$ and then add or subtract (or both) 520 to their R value, M0. N.B. If brackets are omitted in a moments equation e.g. $\left(520+R_{C}\right) .4$ is written as $520+R_{C} .4$, the M mark can be scored	
3	$8 m u-4 m u=5 m v$	M1A1
	$v=0.8 u$	A1
	For P: $\quad-I=4 m(0.8 u-2 u)$	M1 A1
	$I=4.8 \mathrm{mu}$	A1
	OR For Q: $\quad I=m(0.8 u+4 u)$	M1 A1
	$I=4.8 m u$	A1
		6
	Notes	
3	First M1 for CLM with correct no. of terms, all dimensionally correct, to give an equation in m, u and their v only. Condone consistent g 's or cancelled m 's and sign errors. (N.B. The CLM equation could be obtained by equating the magnitudes of the impulses on each particle) First A1 for a correct equation (they may have - $5 m v$) Second A1 for $0.8 u$ or $-0.8 u$ (as appropriate) Second M1 for using Impulse = Change in Momentum for either P or Q (M0 if clearly adding momenta or if g is included or if different mass in the two momentum terms) but condone sign errors.	

Question Number	Scheme	Marks
	Third A1 for $\quad 4 m(0.8 u-2 u)$ or $-4 m(0.8 u-2 u)$ OR for $\quad m(0.8 u+4 u)$ or $-m(0.8 u+4 u)$ Fourth A1 for 4.8mu (must be positive since magnitude)	
4(i)	$\left\|\mathbf{F}_{2}\right\|^{2}=8^{2}+14^{2}-2 \times 8 \times 14 \cos 30$	M1 A1
	Solve for $\left\|\mathbf{F}_{2}\right\|=8.1(\mathrm{~N})$ or better	M1 A1 (4)
	OR: $\begin{aligned} & \left\|\mathbf{F}_{2}\right\| \cos \alpha=14 \cos 30-8 \\ & \left\|\mathbf{F}_{2}\right\| \sin \alpha=14 \sin 30\end{aligned}$	M1 A1
	Solve for $\left\|\mathbf{F}_{2}\right\|=8.1$ (N) or better	M1 A1 (4)
4(ii)	$\frac{\sin \theta}{8}=\frac{\sin 30}{8.12467} \text { or } \quad \frac{\sin \phi}{14}=\frac{\sin 30}{8.12467}$	M1 A1
	Solve: $\quad \theta=29.49^{\circ} \quad$ or $\quad \phi=120.51^{\circ}$	M1 A1
	Bearing is 149° (nearest degree)	A1 (5)
	OR:$\left\|\mathbf{F}_{2}\right\| \cos \alpha=14 \cos 30-8=4.124(355)$. $\left\|\mathbf{F}_{2}\right\| \sin \alpha=14 \sin 30$	M1 A1
	Solve: $\quad \alpha=59.49^{\circ}$	M1 A1
	Bearing is 149° (nearest degree)	A1 (5)
	Notes	
4(i)	First M1 for use of cos rule with 30° First A1 for a correct equation OR: First M1 for 'resolving' in 2 directions with $30^{\circ} / 60^{\circ}$ (N.B. M0 here if cos/sin confused) First A1 for TWO correct equations Second M1 for solving for $\left\|\mathbf{F}_{2}\right\|$, independent but must be solving a 'correct cosine formula but with wrong angle' if using method 1 OR for eliminating α from two equations, independent but equations must have the correct structure if using method 2 Second A1 for 8.1 (N) or better	
4(ii)	First M1 for use of sin rule with 30° First A1 for a correct equation (allow 8.12 or better) OR: First M1 for 'resolving' in 2 directions with $30^{\circ} / 60^{\circ}$	

Question Number	Scheme	Marks
	First A1 for TWO correct equations (allow 4.12 or better) Second M1, independent, for solving a 'correct sine formula' for $\boldsymbol{\theta}$ or $\boldsymbol{\phi}$ OR independent for solving two equations, with correct structure, for $\boldsymbol{\alpha}$ Second A1 for $\theta=$ AWRT 29° or $\phi=$ AWRT 121° OR $\alpha=$ AWRT 59°	
	Third A1 for Bearing is 149° (nearest degree)	
	N.B. First M1A1 Could use cos rule to find an angle	
	N.B. If the resolving method is used and there are no (i) or (ii) labels, only award M1A1 in both cases when an answer is reached.	
5a	$0=14.7^{2}-2 \times 9.8 h$	M1A1
	$h=11.025$	A1
	maxht $=13.5$ or 14 (m)	A1 (4)
5b	$-1.5=14.7 t-4.9 t^{2}$	M1A1
	$4.9 t^{2}-14.7 t-1.5=0$	
	$t=\frac{14.7 \pm \sqrt{14.7^{2}+6 \times 4.9}}{9.8}$	DM1
	$t=3.1$ or 3.10 (s)	A1 (4)
5c	$v^{2}=14.7^{2}+2 \times(-9.8) \times(-2.5)$	M1 A1
	$v=16.3$ or $16\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1 (3)
		11
	Notes	
5a	N.B. If they use $g=9.81$, lose first A mark (once for whole question) but all other A marks can be scored. First M1 for a complete method to find the height (Could involve two suvat equations) condone sign errors. First A1 for a correct equation (or equations) Second A1 for $h=11$ (may be unsimplified) or better (For other methods, give this A1 for any correct (may be unsimplified) intermediate answer) Third A1 for 13.5 or 14 (m)	
5b	First M1 for a complete method to find the required time (they may find the time up (1.5 s) and then add on the time down. Condone sign errors First A1 for a correct equation or equations Second DM1, dependent, for solving to find required time Second A1 for 3.1 or 3.10 (s)	

Question Number	Scheme	Marks
5c	First M1 for a complete method to find the speed / velocity(Could involve two suvat equations) Condone sign errors but must have correct numbers in their equation(s) First A1 for a correct equation (or equations) Second A1 for 16 or $16.3\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Must be positive (speed)	
$6 \mathbf{}$		B1 shape B1 270, V
6b	$\frac{V}{0.6}=\frac{5 V}{3} \quad$ Given answer	M1A1 (2)
6c	Time decelerating is 5 V	B1
	$\begin{aligned} \frac{1}{2} V \frac{5 V}{3}+\left(270-5 V-\frac{5 V}{3}\right) V+\frac{1}{2} V .5 V & =1500 \\ \text { OR: } \quad \frac{1}{2}\left(270+270-5 V-\frac{5 V}{3}\right) V & =1500 \end{aligned}$	M1 A2
	$V^{2}-81 V+450=0 \quad$ Given answer	$\begin{aligned} & \text { DM1A1 } \\ & (6) \\ & \hline \end{aligned}$
6d	$\begin{aligned} & V^{2}-81 V+450=0 \\ & (V-6)(V-75)=0 \end{aligned} \quad \text { or } \quad V=\frac{81 \pm \sqrt{81^{2}-4 \times 450}}{2}$	M1 solving
	$V=6$ or 75	A1 A1
	$V=6$ since $(5 \times 75)>270$ or $V=75$ unrealistic	B1 (4)
		14
	Notes	
6a	First B1 for a trapezium with line starting at the origin Second B1 for 270 and V correctly marked	
6b	M1 for $(t=) \frac{V}{0.6}$; N.B. M1A0 for $V=0.6 t$ then answer Must see division or intermediate step from $V=0.6 t$ e.g. Changing 0.6 into 3/5. A1 for $t=\frac{5 V}{3}$ Given answer	

Question Number	Scheme	Marks
7b	B1 for $F=\frac{1}{4} R$ seen e.g. on diagram First M1 for resolving for A perp to the plane First A1 for correct equation N.B. These first 3 marks can be earned in (a). Second M1 (Hence) for substituting for R and F and trig. and solving for a (must be some evidence of this) their equations of motion from part (a)	
7c	Second A1 for given answer (Not available if not using exact values for trig ratios)	B1 for particles have same acceleration (B0 for same velocity or if incorrect extras given)
7d	First M1 for attempt to find speed (or speed ${ }^{2}$) when B hits the ground (M0 if uses g) First A1 for a correct expression Second M1 for attempt to find deceleration of A Second A1 for correct deceleration Third M1 for using deceleration (must have found a deceleration) with v =0 to find distance (M0 if uses g) Third A1 for a correct equation Fourth A1 for 2.25 (m)	

Pearson

Mark Scheme (Results)

Oct 2017

Pearson Edexcel IAL in Mechanics 2 (WME02/01)

Question Number	Scheme	Marks	Notes
$\mathbf{6 (a)}$		M1	Integrate a to obtain v
	$v=t^{2}-3 t(+c)$	A1	Condone missing C
	$t=3, v=2 \Rightarrow c=2$	M1	Substitute to find C
	$v=t^{2}-3 t+2$	A1	
(b)	$0=(t-2)(t-1)$	(4)	
	$t=1,2$	M1	Set their $v=0$ and solve for t
	$s=\int_{1}^{2}\left(t^{2}-3 t+2\right) \mathrm{d} t$	A1	
	$=\left[\frac{1}{3} t^{3}-\frac{3}{2} t^{2}+2 t\right]_{1}^{2}$	M1	Integrate v to obtain s
	$=-\frac{1}{6} \mathrm{~m}$	dM1	Condone if limits not seen. Follow their v.
	Dist $=\frac{1}{6}(\mathrm{~m})$	Ase their t values as limits.	
Dependent on the preceding M1.			

$\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$	Scheme	Marks	Notes
7(a)	$\frac{1}{2} m \times v^{2}-\frac{1}{2} m \times 15^{2}=47.5 \mathrm{mg}$	M1	$\begin{array}{l}\text { The Q tells them to use energy. } \\ \text { Need all 3 terms. Condone sign errors } \\ \text { Must be dimensionally correct. }\end{array}$
		A1	$\begin{array}{l}\text { Unsimplified equation with at most one } \\ \text { error }\end{array}$
	$v=34 \mathrm{~m} \mathrm{~s}^{-1}$	A1	Correct unsimplified equation
(b)	$u=15 \times \frac{3}{5} \mathrm{~m} \mathrm{~s}^{-1}, a=-9.8 \mathrm{~m} \mathrm{~s}^{-1}, v=0$	A1	
	$0=9^{2}-2 \times 9.8 s$	(4)	
	$s=4.1326 \ldots$		

