

Mark Scheme(Results)

October 2016

Pearson Edexcel International A Level in Mechanics 1 (WME01/01)

ALWAYS LEARNING

Question Number	Scheme	Marks
2(a)	(-10i + aj) + (bi - 5j) + (2ai + 7j) = 3(3i + 4j)	M1
	$a-5+7=12 \Rightarrow a=10$	M1 A1
	$-10 + b + 2a = 9 \implies b = -1$	M1 A1 (5)
(b)	20i + 20j = u + 4(3i + 4j) u = (8i + 4j)	M1 A1
	$u = \sqrt{8^2 + 4^2} = \sqrt{80} = 8.9$ (or better)	M1 A1 (4)
		9
	Notes	
2(a)	First M1 for applying $\mathbf{F} = m\mathbf{a}$; need all terms but allow slips and allow <i>m</i> instead of 3 Second M1 (independent but M0 if they have 0 instead of <i>m</i> a) for equating <i>coefficients</i> of j First A1 for $a = 10$ Third M1 (independent but M0 if they have 0 instead of <i>m</i> a) for equating <i>coefficients</i> of i Second A1 for $b = -1$	
(b)	First M1 for applying $\mathbf{v} = \mathbf{u} + t\mathbf{a}$; need all terms and must be vector \mathbf{u} First A1 for $8\mathbf{i} + 4\mathbf{j}$ Second M1 (independent) for finding magnitude of their vector \mathbf{u} Second A1 for $\sqrt{80}$ or 8.9 or better	

Question Number	Scheme	Marks
4.(a)	$\mathbf{p} = (-5\mathbf{i} + 9\mathbf{j}) + t(\mathbf{i} - 2\mathbf{j})$	M1 A1 (2)
(b)	2 = 9 - 2t t = 3.5 $\mathbf{p} = (-5\mathbf{i} + 9\mathbf{j}) + 3.5(\mathbf{i} - 2\mathbf{j}) = (-1.5\mathbf{i} + 2\mathbf{j})$	M1 A1 M1 A1 (4)
(c)	$\frac{2b-1}{5-2b} = \frac{1}{-2}$ b = -1.5	M1 A1 DM1 A1 (4) 10
	Notes	
4. (a)	M1 for clear attempt at $\mathbf{p} = (-5\mathbf{i} + 9\mathbf{j}) + t(\mathbf{i} - 2\mathbf{j})$ (allow slips but must be '+ ') A1 if correct	
(b)	First M1 for equating the j component of their p to 2 First A1 for $t = 3.5$ Second M1 (independent) for substituting their t value into their p Second A1 for $(-1.5i + 2i)$	
(c)	First M1 for $\frac{2b-1}{5-2b} = \pm \frac{1}{2}$ or $\frac{2b-1}{5-2b} = \pm \frac{2}{1}$ (must be in <i>b</i> only but allow slips) First A1 for a correct equation in <i>b</i> only Second M1 (dependent on first M1) for solving for <i>b</i> Second A1 for <i>b</i> = -1.5	

Question Number	Scheme	Marks
5(a)	(\Box), $R = 8\cos 50^{\circ} + 0.5 g \cos 30^{\circ}$ (\Box), $F = 8\cos 40^{\circ} - 0.5 g \sin 30^{\circ}$ $F = \mu R$ $\mu = 0.39$ or 0.392	M1 A2 M1 A2 B1 DM1 A1
		9
	NotesFirst M1 for resolving perpendicular to the plane with usual rules and 8 must be used with 40° or 50° and $0.5(g)$ must be used with 30° or 60° First A1 and second A1 for a correct equation – 1 each error (A1A0 or A0A0)Second M1 for resolving parallel to the plane with usual rules and 8 must be used with 40° or 50° and $0.5(g)$ must be used with 30° or 60° Third A1 and fourth A1 for a correct equation – 1 each error (A1A0 or A0A0)B1 for $F = \mu R$ seenThird M1 dependent on both previous M marks for solving for μ Fifth A1 for 0.39 or 0.392N.B. If they resolve in any other directions e.g. horizontally or vertically, applysimilar rules to the above for the M mark in each case.	

Question Number	Scheme	Marks
6.	$s_{A} = 35t + \frac{1}{2}0.4t^{2}; s_{B} = 44t + \frac{1}{2}0.5t^{2}$ $44t + \frac{1}{2}0.5t^{2} = 200 + 35t + \frac{1}{2}0.4t^{2}$ $\frac{1}{20}t^{2} + 9t - 200 = 0$ $(t - 20)(t + 200) = 0$ $t = 20$ $v = 44 + \frac{1}{2}.20 = 54 \text{ ms}^{-1}$	M1 A1 A1 M1 A1 M1 A1 DM1 A1 9
	Notes	
	First M1 for use of $s = ut + \frac{1}{2}at^2$ for either A or B First A1 for a correct equation for A Second A1 for a correct equation for B Second M1 for producing a quadratic in t only from their s_A = their $s_B \pm 200$ Third A1 for a correct '3 term = 0' equation Third M1 (can be implied by one correct answer) for attempt to solve their quadratic (M0 if linear). Must include 200, must be 3 terms and must have come from using both distance expressions. Fourth A1 for t = 20 Fourth M1 dependent on third M1 for correctly using their t value to find v Fifth A1 for 54 N.B. SC for trial and error to find t ; can score max M1A1A1M1A0M0A0M1A1 6/9	

Question Number	Scheme	Marks
7.(a)		B1 shape B1 figs. (V,T,180) (2)
(b)	Time accelerating = $V/1 = V$ Time decelerating = $V/0.5 = 2V$ Time at constant speed, $T = 180 - (2V + V)$ T = 180 - 3V Printed answer	M1 A1 (2)
(c)	$\frac{1}{2}(180 + 180 - 3V)V = 4800$ $V^{2} - 120V + 3200 = 0$ (V - 40)(V - 80) = 0 $V = 40 \text{ or } 80 \text{ or both}, \text{ since } (180 - 3 \times 80) < 0$	M1 A1 A1 A1 DM 1 A1, M1 (7) 11
7.(a)	Notes First B1 for a trapezium, starting at the origin and finishing on the <i>t</i> -axis. Second B1 for V, T with delineators or marked on the top of the trapezium or oe and 180 correctly positioned.	
(b)	M1 for both Time accelerating = $V/1 = V$ and Time decelerating = $V/0.5 = 2V$ M0 if no working for the 2V as it's a 'Show that' or if they use $V/-0.5$ and fudge the -ve sign A1 for $T = 180 - (2V + V) = 180 - 3V$ Printed answer	

(c)	First M1 for attempt at using area under graph = 4800, with appropriate terms, to produce	
	an equation in V only; must have used $\frac{1}{2}$ somewhere.	
	(M0 if one <i>suvat</i> formula used)	
	First A1 and second A1 for a correct equation (A1A0 one error)	
	Third A1 for a correct quadratic expression $= 0$	
	Second M1 dependent on first M1 for solving their quadratic (can be implied by 1 correct answer)	
	Fourth A1 for $V = 40$ or $V = 80$ or both	
	Third M1 for a correct reason for rejecting $V = 80$. (only available if both correct values have been obtained)	
	Allow: "Since $T > 0$, $V = 40$ " oe	

Question Number	Scheme	Marks
8 (a)		
	$1.4^2 = 2a \times 0.5 \Rightarrow a = 1.96 \text{ ms}^{-2}$	M1 A1
	3g-T=3a or -3a	M1 A1
	T = 23.5 N or 24 N	A1 (5)
(b)	$E = \omega D$	D1
	$F = \mu R$ $R = 2g\cos\alpha$	B1 M1 A1
	$T-2g\sin\alpha - F = 2a \text{ or } -2a$	M1 A1 A1
	$\mu = 0.5$	DM 1 A1 (8)
		13
	Notes	
8(a)	First M1 for using one or more <i>suvat</i> formulae to produce an equation in <i>a</i> only First A1 for 1.96 (or -1.96 but only if correctly used in the second equation, in which case they <i>could</i> score $5/5$) Second M1 for resolving vertically for <i>Q</i> (correct no. of terms but condone sign errors) Second A1 for a correct equation provided <i>a</i> used consistently in their two equations (but <i>a</i> does <u>not</u> need to be substituted) N.B. If they haven't found a value for <i>a</i> , the A1 can be scored for either $3a$ or $-3a$ in the equation of motion. Third A1 for 23.5 or 24	
(b)	B1 for $F = \mu R$ seen First M1 for resolving perpendicular to the plane (correct no. of terms with 2g resolved) First A1 for a correct equation (M1A0 for $R = mg\cos\alpha$) Second M1 for resolving parallel to the plane (correct no. of terms with 2g resolved but condone sign errors) Second A1 and third A1 for a correct equation (A1A0 for one error) N.B. Neither T nor F nor a needs to be substituted. Third M1 dependent on both previous M marks, for solving for μ (a numerical value) Fourth A1 for μ = 0.5 (A0 for 0.499)	

Mark Scheme(Results)

October 2016

Pearson Edexcel International A Level in Mechanics 2 (WME02/01)

Q	Scheme	Marks	Notes
	Change in energy		-1 each error
	$=\pm\left(\frac{1}{2}\times4\times6^2-4g\times10\sin\alpha\right)$	A2	
	= $72 - 40g \times \frac{1}{7} = 16$ (J) *given answer*	A1	-16 is A0. Condone -16 becoming +16
		(4)	
3a alt	Complete strategy using <i>suvat</i> and N2L to find the work done	M1	
	$v^2 = u^2 + 2as \Longrightarrow 36 = -20a (a = -1.8)$	A1	
	$Fr + 4g\sin\theta = 4 \times (\text{their 1.8})$ $(Fr = 1.6)$	A1	
	Work Done = $1.6 \times 10 = 16$ (J) *given answer*	A1	
	¥	(4)	
	NB: For 3(b) must be using work-energy		
	Considering the whole journey:		Requires all 3 terms.
3b	$\frac{1}{2} \times 4v^2 = \frac{1}{2} \times 4 \times 36 - 2 \times 16$	M1	Must be dimensionally correct. Condone sign errors
		A1	Correct unsimplified equation
	$v^2 = 20$, $v = 4.47 (\mathrm{m s^{-1}})$ (4.5)	A1	Accept $2\sqrt{5}$
		(3)	
3b alt	Working from <i>B</i> to <i>A</i> : $\frac{1}{2} \times 4 \times v^2 + 16 = 40g \sin \alpha$	M1	Requires all 3 terms. Must be dimensionally correct. Condone sign errors
		A1	Correct unsimplified equation
	$v^2 = 20$, $v = 4.47 (\mathrm{m s^{-1}})$ (4.5)	A1	Accept $2\sqrt{5}$
		(3)	
		[7]	
4 a	Differentiate p to obtain v :	M1	
	$\mathbf{v} = (3t^2 - 9t - 24)\mathbf{i} + (-3t^2 + 6t + 12)\mathbf{j}$	A1	
	Equate coefficients and obtain quadratic in	DM1	Dependent on preceding M1

Q	Scheme	Marks	Notes
	T: $3T^{2}-9T-24 = -3T^{2}+6T+12$ $6T^{2}-15T-36 = 0$		
	Solve for <i>T</i> : $3(2T+3)(T-4) = 0$,	M1	Independent. Solve a 3 term quadratic in <i>T</i>
	T = 4	A1 (5)	
4b	Differentiate v to obtain a:	M1	
	$\mathbf{a} = (6t - 9)\mathbf{i} + (-6t + 6)\mathbf{j}$	A1	
	Use their T: $\mathbf{a} = (6T - 9)\mathbf{i} + (-6T + 6)\mathbf{j} = 15\mathbf{i} - 18\mathbf{j}$	DM1	Dependent on the preceding M1
	Use Pythagoras: $ \mathbf{a} = \sqrt{15^2 + 18^2}$	M1	
	$=\sqrt{549} = 23.4 (\mathrm{m \ s^{-2}})$	A1	23.4 or better
		(5)	
		[10]	

Q	Scheme	Marks	Notes
5a	$R \xrightarrow{5 \text{ m}} F$		
	Take moments about A:	M1	Must be dimensionally correct. Condone sin/cos confusion
	$5N = 4\cos\theta W$	A1	
	$N = \frac{12}{25}W = 0.48W$ *Given Answer*	A1	
		(3)	
5b	$G = \frac{1}{4}N = 0.12W$	B1	Seen or implied
	Resolve vertically	M1	Needs all terms. Condone sin/cos confusion and sign errors
	$\updownarrow: R + N\cos\theta + G\sin\theta = W$	A1	(R = 0.616W)
	Resolve horizontally	M1	Needs all terms. Condone sin/cos confusion and sign errors
	$\leftrightarrow: F + G\cos\theta = N\sin\theta$	A1	(F = 0.312W)
	$\mu = \frac{N\sin\theta - G\cos\theta}{W - N\cos\theta - G\sin\theta}$	DM1	Use $F = \mu R$ to find μ Dependent on 2 preceding M marks
	$=\frac{0.48W\times0.8-0.12W\times0.6}{W-0.48W\times0.6-0.12W\times0.8}=\frac{0.312}{0.616}$		
	$= 0.51 (0.50649) \left(\frac{39}{77}\right)$	A1	
		(7) [10]	
	NB, One of the two equations required for part (b) could be a moments equation: $M(P) 1 \times W \cos \theta + 5F \sin \theta = 5R \cos \theta$ $M(B) 3N + 8R \cos \theta = 4W \cos \theta + 8F \sin \theta$		