edexcel

Mark Scheme(Results)
October 2016

Pearson Edexcel International A Level in Mechanics 1 (WME01/01)

Question Number	Scheme	Marks
	$\begin{gathered} (-10 \mathbf{i}+a \mathbf{j})+(b \mathbf{i}-5 \mathbf{j})+(2 a \mathbf{i}+7 \mathbf{j})=3(3 \mathbf{i}+4 \mathbf{j}) \\ a-5+7=12 \Rightarrow a=10 \\ -10+b+2 a=9 \Rightarrow b=-1 \end{gathered}$	M1 M1 A1 M1 A1
(b)	$\begin{aligned} 20 \mathbf{i}+20 \mathbf{j} & =\mathbf{u}+4(3 \mathbf{i}+4 \mathbf{j}) \\ \mathbf{u} & =(8 \mathbf{i}+4 \mathbf{j}) \\ u & =\sqrt{8^{2}+4^{2}}=\sqrt{80}=8.9 \text { (or better) } \end{aligned}$	$$
	Notes	9
2(a)	First M1 for applying $\mathbf{F}=$ ma; need all terms but allow slips and allow m instead of 3 Second M1 (independent but M0 if they have $\mathbf{0}$ instead of ma) for equating coefficients of j First A1 for $a=10$ Third M1 (independent but M0 if they have $\mathbf{0}$ instead of ma) for equating coefficients of \mathbf{i} Second A1 for $b=-1$	
(b)	First M1 for applying $\mathbf{v}=\mathbf{u}+$ ta; need all terms and must be vector \mathbf{u} First A1 for $8 \mathbf{i}+4 \mathbf{j}$ Second M1 (independent) for finding magnitude of their vector \mathbf{u} Second A1 for $\sqrt{ } 80$ or 8.9 or better	

Question Number	Scheme	Marks
		$\begin{aligned} \text { M1 A2 } \\ \text { M1 A2 } \\ \text { A1 } \end{aligned}$
	First M1 for either a vertical resolution (with correct of terms) or a moments equation (all terms dim correct and correct no. of terms) First A1 and Second A1 for a correct equation in R (or S where $S=2 R$) only or R and x only or S and x only. (-1 each error , A1A0 or A0A0) Second M1 for either a vertical resolution (with correct of terms) or a moments equation (all terms dim correct and correct no. of terms) Third A1 and Fourth A1 for a correct equation in R (or S where $S=2 R$) only or R and x only or S and x only. (-1 each error, A1A0 or A0A0) Fifth A1 for $x=5.7$ oe N.B. On ePen, first 3 marks are for a vertical resolution, if it appears, second 3 marks are for a moments equation. If no vertical resolution, award marks as they appear for the (two) moments equation(s). (i) In a moments equation, if R and $2 R$ (or S and $0.5 S$) are interchanged, treat as 1 error. (ii) Ignore diagram if it helps the candidate. (iii) If an equation is correct but contains both R and S, treat as 1 error. (iv) Full marks possible if all g 's omitted. (v) For inconsistent omission of g, penalise each omission. $\begin{aligned} & M(B), R \times 5+S(8-x)=12 g \times 4 \\ & M(C), S(x-3)=12 g \times 1+3 g \times 5 \\ & M(D), R(x-3)+3 g(8-x)=12 g(x-4) \end{aligned}$ N.B. If they use a different variable, other than x, for a length, with it clearly marked on the diagram, they can score all the marks for any moments equation.	

Question Number	Scheme	Marks
4.(a)	$\mathbf{p}=(-5 \mathbf{i}+9 \mathbf{j})+t(\mathbf{i}-2 \mathbf{j})$	M1 A1 (2)
(b)	$\begin{aligned} & 2=9-2 t \\ & t=3.5 \\ & \mathbf{p}=(-5 \mathbf{i}+9 \mathbf{j})+3.5(\mathbf{i}-2 \mathbf{j})=(-1.5 \mathbf{i}+2 \mathbf{j}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 A1 (4) } \end{aligned}$
(c)	$\begin{gathered} \frac{2 b-1}{5-2 b}=\frac{1}{-2} \\ b=-1.5 \end{gathered}$	M1 A1 DM1 A1 (4) 10
	Notes	
4.(a)	M1 for clear attempt at $\mathbf{p}=(-5 \mathbf{i}+9 \mathbf{j})+t(\mathbf{i}-2 \mathbf{j})$ (allow slips but must be ' + ') A1 if correct	
(b)	First M1 for equating the \mathbf{j} component of their \mathbf{p} to 2 First A1 for $t=3.5$ Second M1 (independent) for substituting their t value into their \mathbf{p} Second A1 for $(-1.5 \mathbf{i}+2 \mathbf{j})$	
(c)	First M1 for $\frac{2 b-1}{5-2 b}= \pm \frac{1}{2}$ or $\frac{2 b-1}{5-2 b}= \pm \frac{2}{1}$ (must be in b only but allow slips) First A1 for a correct equation in b only Second M1 (dependent on first M1) for solving for b Second A1 for $b=-1.5$	

Question Number	Scheme	Marks
6.	$\begin{aligned} & s_{A}=35 t+{ }_{2}^{1} 0.4 t^{2} ; s_{B}=44 t+{ }_{2}^{1} 0.5 t^{2} \\ & 44 t+\frac{1}{2} 0.5 t^{2}=200+35 t+\frac{1}{2} 0.4 t^{2} \\ & \frac{1}{20} t^{2}+9 t-200=0 \\ & (t-20)(t+200)=0 \\ & t=20 \\ & v=44+\frac{1}{2} .20=54 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1 M1 A1 M1 A1 DM1 A1 9
	Notes	
	First M1 for use of $\boldsymbol{s}=\boldsymbol{u} \boldsymbol{t}+\frac{1}{2} \boldsymbol{a} \boldsymbol{t}^{2}$ for either A or B First A1 for a correct equation for A Second A1 for a correct equation for B Second M1 for producing a quadratic in t only from their $s_{A}=$ their $s_{B} \pm 200$ Third A1 for a correct ' 3 term $=0$ ' equation Third M1 (can be implied by one correct answer) for attempt to solve their quadratic (M0 if linear). Must include 200, must be 3 terms and must have come from using both distance expressions. Fourth A1 for $t=20$ Fourth M1 dependent on third M1 for correctly using their t value to find v Fifth A1 for 54 N.B. SC for trial and error to find t; can score max M1A1A1M1A0M0A0M1A1 6/9	

Question Number	Scheme	Marks
7.(a)		B1 shape B1 figs. $\begin{equation*} (V, T, 180) \tag{2} \end{equation*}$
(b)	Time accelerating $=V / 1=V$ Time decelerating $=V / 0.5=2 \mathrm{~V}$ Time at constant speed, $T=180-(2 V+V)$ $T=180-3 V$ Printed answer	M1 A1
(c)	$\begin{aligned} & \frac{1}{2}(180+180-3 V) V=4800 \\ & V^{2}-120 V+3200=0 \\ & (V-40)(V-80)=0 \\ & V=40 \text { or } 80 \text { or both, since }(180-3 \times 80)<0 \end{aligned}$	M1 A1 A1 A1 DM1 A1, M1 (7) 11
	Notes	
7.(a)	First B1 for a trapezium, starting at the origin and finishing on the t-axis. Second B1 for V, T with delineators or marked on the top of the trapezium or oe and 180 correctly positioned.	
(b)	M1 for both Time accelerating $=V / 1=V$ and Time decelerating $=V / 0.5=2 V$ M0 if no working for the $2 V$ as it's a 'Show that' or if they use $V /-0.5$ and fudge the -ve sign A1 for $T=180-(2 V+V)=180-3 V$ Printed answer	

(c) \quad First M1 for attempt at using area under graph $=4800$, with appropriate terms, to produce an equation in V only; must have used $\frac{\mathbf{1}}{2}$ somewhere.
(M0 if one suvat formula used)
First A1 and second A1 for a correct equation (A1A0 one error)
Third A1 for a correct quadratic expression $=0$
Second M1 dependent on first M1 for solving their quadratic (can be implied by 1 correct answer)
Fourth A1 for $V=40$ or $V=80$ or both
Third M1 for a correct reason for rejecting $V=80$. (only available if both correct values have been obtained)
Allow: "Since $T>0, V=40$ " oe

Question Number	Scheme	Marks
8(a)	$\begin{aligned} & 1.4^{2}=2 a \times 0.5 \Rightarrow a=1.96 \mathrm{~ms}^{-2} \\ & 3 g-T=3 a \text { or }-3 a \\ & T=23.5 \mathrm{~N} \text { or } 24 N \end{aligned}$	M1 A1 M1 A1 A1 (5)
(b)	$\begin{aligned} & F=\mu R \\ & R=2 g \cos \alpha \\ & T-2 g \sin \alpha-F=2 a \text { or }-2 a \\ & \mu=0.5 \end{aligned}$	B1 M1 A1 M1 A1 A1 DM1 A1 (8)
		13
	Notes	
8(a)	First M1 for using one or more suvat formulae to produce an equation in a only First A1 for 1.96 (or - 1.96 but only if correctly used in the second equation, in which case they could score 5/5) Second M1 for resolving vertically for Q (correct no. of terms but condone sign errors) Second A1 for a correct equation provided a used consistently in their two equations (but a does not need to be substituted) N.B. If they haven't found a value for a, the A1 can be scored for either $3 a$ or $-3 a$ in the equation of motion. Third A1 for 23.5 or 24	
(b)	B1 for $F=\mu R$ seen First M1 for resolving perpendicular to the plane (correct no. of terms with $2 g$ resolved) First A1 for a correct equation (M1A0 for $R=m g \cos \boldsymbol{\alpha}$) Second M1 for resolving parallel to the plane (correct no. of terms with $2 g$ resolved but condone sign errors) Second A1 and third A1 for a correct equation (A1A0 for one error) N.B. Neither T nor F nor a needs to be substituted. Third M1 dependent on both previous M marks, for solving for $\boldsymbol{\mu}$ (a numerical value) Fourth A1 for $\boldsymbol{\mu}=0.5$ (A0 for 0.499)	

edexcel ${ }_{\text {It }}^{\text {In }}$

Mark Scheme(Results)
October 2016

Pearson Edexcel International A Level
in Mechanics 2 (WME02/01)

Q	Scheme	Marks	Notes
	Change in energy $= \pm\left(\frac{1}{2} \times 4 \times 6^{2}-4 g \times 10 \sin \alpha\right)$	A2	-1 each error
	$=72-40 g \times \frac{1}{7}=16(\mathrm{~J}) *$ given answer*	A1	$\begin{aligned} & -16 \text { is A } 0 \text {. } \\ & \text { Condone }-16 \text { becoming }+16 \end{aligned}$
		(4)	
3a alt	Complete strategy using suvat and N2L to find the work done	M1	
	$v^{2}=u^{2}+2 a s \Rightarrow 36=-20 a \quad(a=-1.8)$	A1	
	$\begin{aligned} & F r+4 g \sin \theta=4 \times(\text { their } 1.8) \\ & (F r=1.6) \end{aligned}$	A1	
	Work Done $=1.6 \times 10=16(\mathrm{~J})$ *given answer*	A1	
		(4)	
	NB: For 3(b) must be using work-energy		
3b	Considering the whole journey: $\frac{1}{2} \times 4 v^{2}=\frac{1}{2} \times 4 \times 36-2 \times 16$	M1	Requires all 3 terms. Must be dimensionally correct. Condone sign errors
		A1	Correct unsimplified equation
	$v^{2}=20, \quad v=4.47\left(\mathrm{~m} \mathrm{~s}^{-1}\right)(4.5)$	A1	Accept $2 \sqrt{5}$
		(3)	
3b alt	Working from B to A : $\frac{1}{2} \times 4 \times v^{2}+16=40 g \sin \alpha$	M1	Requires all 3 terms. Must be dimensionally correct. Condone sign errors
		A1	Correct unsimplified equation
	$v^{2}=20, \quad v=4.47\left(\mathrm{~m} \mathrm{~s}^{-1}\right)(4.5)$	A1	Accept $2 \sqrt{5}$
		(3)	
		[7]	
4a	Differentiate \mathbf{p} to obtain \mathbf{v} :	M1	
	$\mathbf{v}=\left(3 t^{2}-9 t-24\right) \mathbf{i}+\left(-3 t^{2}+6 t+12\right) \mathbf{j}$	A1	
	Equate coefficients and obtain quadratic in	DM1	Dependent on preceding M1

Q	Scheme	Marks	Notes
	T: $\begin{array}{rl} 3 T^{2}-9 T-24=-3 T^{2}+6 & T+12 \\ 6 T^{2}-15 T-36=0 \end{array}$		
	Solve for T : $3(2 T+3)(T-4)=0$,	M1	Independent. Solve a 3 term quadratic in T
	$T=4$	A1	
		(5)	
4b	Differentiate \mathbf{v} to obtain \mathbf{a} :	M1	
	$\mathbf{a}=(6 t-9) \mathbf{i}+(-6 t+6) \mathbf{j}$	A1	
	Use their T : $\mathbf{a}=(6 T-9) \mathbf{i}+(-6 T+6) \mathbf{j}=15 \mathbf{i}-18 \mathbf{j}$	DM1	Dependent on the preceding M1
	Use Pythagoras: $\quad\|\mathbf{a}\|=\sqrt{15^{2}+18^{2}}$	M1	
	$=\sqrt{549}=23.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	A1	23.4 or better
		(5)	
		[10]	

Q	Scheme	Marks	Notes
5 a			
	Take moments about A :	M1	Must be dimensionally correct. Condone sin/cos confusion
	$5 N=4 \cos \theta W$	A1	
	$N=\frac{12}{25} W=0.48 W \quad * \text { Given Answer* }$	A1	
		(3)	
5b	$G=\frac{1}{4} N=0.12 \mathrm{~W}$	B1	Seen or implied
	Resolve vertically	M1	Needs all terms. Condone sin/cos confusion and sign errors
	$\downarrow: R+N \cos \theta+G \sin \theta=W$	A1	($R=0.616 \mathrm{~W}$)
	Resolve horizontally	M1	Needs all terms. Condone sin/cos confusion and sign errors
	$\leftrightarrow: F+G \cos \theta=N \sin \theta$	A1	$(F=0.312 W)$
	$\mu=\frac{N \sin \theta-G \cos \theta}{W-N \cos \theta-G \sin \theta}$	DM1	Use $F=\mu R$ to find μ Dependent on 2 preceding M marks
	$=\frac{0.48 W \times 0.8-0.12 W \times 0.6}{W-0.48 W \times 0.6-0.12 W \times 0.8}=\frac{0.312}{0.616}$		
	$=0.51(0.50649 \ldots)\left(\frac{39}{77}\right)$	A1	
		(7)	
		[10]	
	NB, One of the two equations required for part (b) could be a moments equation: $\mathrm{M}(P) 1 \times W \cos \theta+5 F \sin \theta=5 R \cos \theta$ $\mathrm{M}(B) \quad 3 N+8 R \cos \theta=4 W \cos \theta+8 F \sin \theta$		

